Evolutionary Local LLM Agent - Self-improving AI assistant that evolves with your needs
ELLMa is a revolutionary self-evolving AI agent that runs locally on your machine. Unlike traditional AI tools, ELLMa learns and improves itself with these key features:
ELLMa includes optional audio capabilities that can be enabled by installing the audio extras. These features require additional system dependencies.
To install with audio support:
pip install ellma[audio]
On Ubuntu/Debian:
sudo apt-get update
sudo apt-get install -y python3-dev portaudio19-dev
On Fedora/RHEL:
sudo dnf install -y python3-devel alsa-lib-devel portaudio-devel
On macOS (using Homebrew):
brew install portaudio
Note: Audio features are optional. If you donβt need them, you can use ELLMa without installing these dependencies.
To install with audio support:
poetry install --extras "audio"
# or with pip
pip install ellma[audio]
Note: Audio features require system dependencies. On Fedora/RHEL:
sudo dnf install python3-devel alsa-lib-devel portaudio-devel
On Ubuntu/Debian:
sudo apt-get install python3-dev portaudio19-dev
# Check environment status
ellma security check
# Install dependencies
ellma security install [--group GROUP]
# Repair environment issues
ellma security repair
ELLMa is a revolutionary self-evolving AI agent that runs locally on your machine. Unlike traditional AI tools, ELLMa learns and improves itself by:
ELLMa includes powerful introspection capabilities to help you understand and debug the system:
# View configuration
sys config # Show all configuration
sys config model # Show model configuration
# Explore source code
sys source ellma.core.agent.ELLMa # View class source
sys code ellma.commands.system # View module source
# System information
sys info # Show detailed system info
sys status # Show system status
sys health # Run system health check
# Module exploration
sys modules # List all available modules
sys module ellma.core # Show info about a module
# Command help
sys commands # List all available commands
sys help # Show help for system commands
These commands support natural language queries, so you can type things like:
sys config
sys modules
sys info
ELLMa includes a comprehensive security and dependency management system that ensures safe and reliable execution:
Run any Python script or module securely:
# Run a script with dependency checking
ellma-secure path/to/script.py
# Interactive secure Python shell
ellma-secure
# Install dependencies from requirements.txt
ellma-secure --requirements requirements.txt
Use the security context manager in your code:
from ellma.core.security import SecurityContext, Dependency
# Define dependencies
dependencies = [
Dependency(name="numpy", min_version="1.20.0"),
Dependency(name="pandas", min_version="1.3.0")
]
# Run code in a secure context
with SecurityContext(dependencies):
import numpy as np
import pandas as pd
# Your secure code here
Add dependency checking to any function:
from ellma.core.decorators import secure
from ellma.core.security import Dependency
@secure(dependencies=[
Dependency(name="requests", min_version="2.25.0"),
Dependency(name="numpy", min_version="1.20.0")
])
def process_data(url: str) -> dict:
import requests
import numpy as np
# Your function code here
poetry install --with dev
# Run bandit security scanner
bandit -r ellma/
# Check for vulnerable dependencies
safety check
# Update all dependencies
poetry update
# Update a specific package
poetry update package-name
# Clone the repository
git clone https://github.com/wronai/ellma.git
cd ellma
# Install in development mode with all dependencies
pip install -e ".[dev]"
pip install ellma
# Basic initialization
ellma init
# Force re-initialization
# ellma init --force
# Download default model
ellma download-model
# Specify a different model
# ellma download-model --model mistral-7b-instruct
# Start interactive shell
ellma shell
# Start shell with verbose output
# ellma -v shell
# System information
ellma exec system scan
# Web interaction (extract text and links)
ellma exec web read https://example.com --extract-text --extract-links
# File operations (search for Python files)
ellma exec files search /path/to/directory --pattern "*.py"
# Get agent status
ellma status
git clone https://github.com/wronai/ellma.git
cd ellma
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e ".[dev]"
pip install pytest pytest-cov pytest-mock
pip install SpeechRecognition pyttsx3
Run all tests:
pytest -v
Run tests with coverage report:
pytest --cov=ellma --cov-report=term-missing
The evolution engine is a core component that enables self-improvement. It works by:
To manually trigger an evolution cycle:
from ellma.core.agent import ELLMa
agent = ELLMa()
agent.evolve()
We use black
for code formatting and flake8
for linting. Before submitting a PR, please run:
black .
flake8
pre-commit install
# Run all tests
make test
# Run specific test file
pytest tests/test_web_commands.py -v
# Run with coverage report
make test-coverage
# Run linters
make lint
# Auto-format code
make format
# Type checking
make typecheck
# Security checks
make security
# Build documentation
make docs
# Serve docs locally
cd docs && python -m http.server 8000
ellma/
βββ ellma/ # Main package
β βββ core/ # Core functionality
β βββ commands/ # Built-in commands
β βββ generators/ # Code generation
β βββ models/ # Model management
β βββ utils/ # Utilities
βββ tests/ # Test suite
βββ docs/ # Documentation
βββ scripts/ # Development scripts
ellma/
βββ ellma/ # Main package
β βββ core/ # Core functionality
β βββ commands/ # Built-in commands
β βββ generators/ # Code generation
β βββ models/ # Model management
β βββ utils/ # Utilities
βββ tests/ # Test suite
βββ docs/ # Documentation
βββ scripts/ # Development scripts
ELLMaβs evolution engine allows it to analyze its performance and automatically improve its capabilities.
# Run a single evolution cycle
ellma evolve
# Run multiple evolution cycles (up to 3 recommended)
ellma evolve --cycles 3
# Force evolution even if not enough commands have been executed
ellma evolve --force
--force
to bypass this requirement# View evolution history (if available)
cat ~/.ellma/evolution/evolution_history.json | jq .
# Monitor evolution logs
tail -f ~/.ellma/logs/evolution.log
# Check evolution status in the main status output
ellma status
Customize the self-improvement process in ~/.ellma/config.yaml
:
evolution:
enabled: true # Enable/disable evolution
auto_improve: true # Allow automatic improvements
learning_rate: 0.1 # Learning rate for evolution (0.0-1.0)
The main status command shows key evolution metrics:
ellma status
Example output:
π€ ELLMa Status
ββββββββββββββββββββββββββ³ββββββββββββββββββββββββββββββββββββββββββ
β Property β Value β
β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
β Version β 0.1.6 β
β Model Loaded β β
Yes β
β Model Path β /path/to/model.gguf β
β Modules β 0 β
β Commands β 3 β
β Commands Executed β 15 β
β Success Rate β 100.0% β
β Evolution Cycles β 0 β
β Modules Created β 0 β
ββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββββββββββββ
### Monitoring Evolution
Track evolution progress and results:
```bash
# View evolution history with detailed metrics
ellma evolution history --limit 10
# Monitor evolution in real-time
ellma evolution monitor
# Get evolution statistics
ellma evolution stats
# Compare evolution cycles
ellma evolution compare cycle1 cycle2
Common issues and solutions:
# If evolution gets stuck
ellma evolution cancel
# Reset to last known good state
ellma evolution rollback
# Clear evolution cache
ellma evolution clean
# Force reset evolution state (use with caution)
ellma evolution reset --confirm
ellma/commands/
:from ellma.commands.base import BaseCommand
class MyCustomCommand(BaseCommand):
"""My custom command"""
ellma/commands/__init__.py
ELLMa includes a powerful set of self-generated utilities for common programming tasks. These include:
See the Generated Utilities Documentation for detailed usage and examples.
def __init__(self, agent):
super().__init__(agent)
self.name = "custom"
self.description = "My custom command"
def my_action(self, param1: str, param2: int = 42):
"""Example action"""
return {"result": f"Got {param1} and {param2}"} ```
ellma/commands/__init__.py
from ellma.core.module import BaseModule
class MyCustomModule(BaseModule):
def __init__(self, agent):
super().__init__(agent)
self.name = "my_module"
self.version = "1.0.0"
def setup(self):
# Initialization code
pass
def execute(self, command: str, *args, **kwargs):
# Handle commands
if command == "greet":
return f"Hello, {kwargs.get('name', 'World')}!"
raise ValueError(f"Unknown command: {command}")
We welcome contributions! Hereβs how you can help:
MIT License - see LICENSE for details.
For complete documentation, visit ellma.readthedocs.io
ELLMa continuously improves by analyzing its performance and automatically generating new modules:
$ ellma evolve
𧬠Starting evolution process...
π Analyzing current capabilities...
π― Identified 3 improvement opportunities:
β
Added: advanced_file_analyzer
β
Added: network_monitoring
β
Added: code_optimizer
π Evolution complete! 3 new capabilities added.
Track your agentβs performance:
# Show agent status
ellma status
# View system health metrics
ellma exec system.health
# Run system scan
ellma exec system.scan
# Read web page content
ellma exec web.read https://example.com
# Read web page with link extraction
ellma exec web.read https://example.com extract_links true extract_text true
# Quick system health check
ellma exec system.health
# Save command output to file
ellma exec system.scan > scan_results.json
Start the interactive shell and use system commands:
# Start the interactive shell
ellma shell
# In the shell, you can run commands like:
ellma> system.health
ellma> system.scan
ellma> web.read https://example.com
ellma> web.read https://example.com extract_links true extract_text true
Example shell session:
π€ ELLMa Interactive Shell (v0.1.6)
Type 'help' for available commands, 'exit' to quit
# Available commands:
# - system.health: Check system health
# - system.scan: Perform system scan
# - web.read [url]: Read web page content
# - web.read [url] extract_links true extract_text true: Read web page with link extraction
# - help: Show available commands
ellma> system.health
{'status': 'HEALTHY', 'cpu_usage': 12.5, 'memory_usage': 45.2, ...}
ellma> web.read example.com
{'status': 200, 'title': 'Example Domain', 'content_length': 1256, ...}
# For commands with parameters, use space-separated values
ellma> web.read example.com extract_links true extract_text true
Generate production-ready code in multiple languages:
# Generate Bash scripts
ellma generate bash --task="Monitor system resources and alert on high usage"
# Generate Python code
ellma generate python --task="Web scraper with rate limiting"
# Generate Docker configurations
ellma generate docker --task="Multi-service web application"
# Generate Groovy for Jenkins
ellma generate groovy --task="CI/CD pipeline with testing stages"
ELLMa understands your system and can:
ellma/
βββ core/ # Core agent and evolution engine
β βββ agent.py # Main LLM Agent class
β βββ evolution.py # Self-improvement system
β βββ shell.py # Interactive shell interface
βββ commands/ # Modular command system
β βββ system.py # System operations
β βββ web.py # Web interactions
β βββ files.py # File operations
βββ generators/ # Code generation engines
β βββ bash.py # Bash script generator
β βββ python.py # Python code generator
β βββ docker.py # Docker configuration generator
βββ modules/ # Dynamic module system
β βββ registry.py # Module registry and loader
β βββ [auto-generated]/ # Self-created modules
βββ cli/ # Command-line interface
βββ main.py # Main CLI entry point
βββ shell.py # Interactive shell
# Run comprehensive system scan
ellma exec system.scan
# Monitor system resources (60 seconds with 5-second intervals)
ellma exec system.monitor --duration 60 --interval 5
# Check system health status
ellma exec system.health
# List top processes by CPU usage
ellma exec system.processes --sort-by cpu --limit 10
# Check open network ports
ellma exec system.ports
# Generate a new Python project
ellma generate python --task "FastAPI project with SQLAlchemy and JWT auth"
# Create a Docker Compose setup
ellma generate docker --task "Python app with PostgreSQL and Redis"
# Generate test cases
```bash
ellma generate test --file app/main.py --framework pytest
# Document a Python function
ellma exec code document_function utils.py --function process_data
Explore practical examples of using the generated utilities in the examples/generated_utils/
directory:
Run any example with:
# From the project root
python -m examples.generated_utils.example_name
# Or directly
cd examples/generated_utils/
python example_name.py
For more details, see the generated utilities documentation.
# Read and extract content from a webpage
ellma exec web.read https://example.com --extract-text --extract-links
# Make HTTP GET request to an API endpoint
ellma exec web.get https://api.example.com/data
# Make HTTP POST request with JSON data
ellma exec web.post https://api.example.com/data --data '{"key": "value"}'
# Generate API client code
ellma generate python --task "API client for REST service with error handling"
## π§ Configuration
ELLMa stores its configuration in `~/.ellma/`:
```yaml
# ~/.ellma/config.yaml
model:
path: ~/.ellma/models/mistral-7b.gguf
context_length: 4096
temperature: 0.7
evolution:
enabled: true
auto_improve: true
learning_rate: 0.1
modules:
auto_load: true
custom_path: ~/.ellma/modules
# Create custom modules that ELLMa can use and improve
from ellma.core.module import BaseModule
class MyCustomModule(BaseModule):
def execute(self, *args, **kwargs):
# Your custom functionality
return result
from ellma import ELLMa
# Use ELLMa programmatically
agent = ELLMa()
result = agent.execute("system.scan")
code = agent.generate("python", task="Data analysis script")
# Install web dependencies
pip install ellma[web]
# Start web interface
ellma web --port 8000
We welcome contributions! Please see our Contributing Guide for details.
# Clone repository
git clone https://github.com/wronai/ellma.git
cd ellma
# Install in development mode
pip install -e .[dev]
# Run tests
pytest
# Run linting
black ellma/
flake8 ellma/
This project is licensed under the MIT License - see the LICENSE file for details.
ELLMa: The AI agent that grows with you π±βπ³